King Klown Logo
King Klown& KOA

EkoH

EkoH (Reputation & Expertise) — first sub‑module under Kollective Intelligence.
Implements seven core services with clear code‑names, supported by dedicated models and fixed parameters.


1) Functional Services (and expected files)

Code‑name list per the v14 inventory; each code‑name maps to a Django service module (e.g., services/scoring.py contains multidimensional_scoring).

Display nameCode name / servicePurpose / behaviorLikely file or module
Multidimensional Scoringmultidimensional_scoringCompute per‑user/content scores across axes (quality, frequency, relevance, expertise).services/scoring.py
Criteria Customizationconfiguration_weightsAdjust scoring weights per axis/domain; read from stored configuration.services/configuration.py (reads ScoreConfiguration)
Automatic Contextual Analysiscontextual_analysisAI tweaks sub‑scores in real time by topic/history/complexity signals.services/contextual_analysis.py
Dynamic Privacyprivacy_settingsEnforce anonymity/pseudonym modes while still exposing merit outputs.services/privacy.py
History & Traceabilityscore_historyPersist every recalculation/config change for auditability.services/history.py (+ model hooks)
Interactive Visualizationsscore_visualizationServe aggregated data for dashboards/skill maps/matrices.services/visualization.py
Expertise Classification by Fieldexpertise_field_classificationBind scores to formal knowledge domains (taxonomy).services/expertise.py

2) Backend Functionalities

3) Database Models (OLTP)

Canonical tables powering EkoH scoring, ethics, audit, and privacy.

Table / ModelPurposeKey fields
ExpertiseCategoryDomain taxonomy for expertise classification.id, name
UserExpertiseScorePer‑user per‑domain raw/weighted score.id, user, category, raw_score, weighted_score
UserEthicsScorePer‑user ethical multiplier (applied to expertise).user (PK), ethical_score
ScoreConfigurationNamed weights/coefficients (global or per field).id, weight_name, weight_value, field
ContextAnalysisLogAI context adjustments applied to scores.id, entity_type, entity_id, field, input_metadata (JSON), adjustments_applied (JSON)
ConfidentialitySettingUser privacy level for identity display near scores.user (PK), level (enum: public/pseudonym/anonymous)
ScoreHistoryFull audit trail of score changes.id, merit_score (FK), old_value, new_value, change_reason

4) Supporting Configuration (frozen)

Finalized parameters for EkoH engine and domain taxonomy.

5) Schedules & runtime

Summary

EkoH exposes seven concrete services (multidimensional_scoring, configuration_weights, contextual_analysis, privacy_settings, score_history, score_visualization, expertise_field_classification) mapped to Django service modules; it persists expertise/ethics/traceability/privacy via dedicated tables and operates under fixed, reviewable parameters. It is the weighting backbone for Smart‑Vote and cross‑module relevance, with periodic recomputation and optional realtime updates.